• Tel.: +1 (905) 728.6962
  • Toll Free: +1 (800) 298.6437


World of 3D Printing

Whats New!


Ask an Expert

When it comes to 3D printing we've got the experience and know-how to help you get the most out of this cutting-edge technology.

We've provided some questions you may have on the right to guide you in getting the answers you seek.

We've got answers Fill out the brief form on the right and we'll get back to you within 48 hours or call us at
(905) 728-6962 or

Questions you may want answered

  • What is 3D printing?
  • Which 3D Printer is right for me?
  • Additve Manufacturing Applications, how can I benefit?
  • Which 3D printing process is right for me?
  • What are Rapid Prototyping Services?
  • What design services does Cimetrix provide?
  • How can my company optimize our production workflow?

Ask a Cimetrix Solutions expert

Mar 22

3D Printing a Space Vehicle with Stratasys Technology

An agile white vehicle roams the Arizona desert, maneuvering the unforgiving terrain as the wind and sun beat down and temperatures swing from one extreme to another. NASA astronauts and engineers are test-driving a rover over rocks and sand, up and down hills in an environment that simulates the brutal conditions of Mars.

NASA Rover with 3D Printed Components

This is Desert RATS (Research and Technology Studies), and the rover — about the size of a Hummer and boasting a pressurized cabin to support humans in space — is being put to the test. It could ultimately serve one of NASA’s loftiest goals: human exploration of Mars. In the nearer future, similar vehicles might help humans investigate near-earth asteroids.

The rover is integral to NASA’s mission to extend human reach farther into space. Its cabin can accommodate a pair of astronauts for days as they study extraterrestrial surfaces. Its twelve rugged wheels on six axles grapple over irregular, unsure terrain. And its forward-jutting cockpit can tilt down to place its observation bubble low to the ground.

3D Printed Rover Parts

To design such a tenacious and specialized vehicle, NASA engineers drew on ingenuity and advanced technology. For example, about 70 of the parts that make up the rover were built digitally, directly from computer designs, in the heated chamber of a production-grade Stratasys 3D Printer. The process, called Fused Deposition Modeling (FDM) Technology or additive manufacturing, creates complex shapes durable enough for Martian terrain.

When you’re building a handful of highly customized vehicles and subjecting them to otherworldly punishment, stock parts and traditional manufacturing methods simply aren’t enough. 3D-printed parts on NASA’s rover include flame-retardant vents and housings, camera mounts, large pod doors, a substantial front bumper, and a great number of custom fixtures proving difficult to product through traditional methods.

"In such strenuous applications, we are always trying to acheive parts with the lightest weight possible, without sacrificing strength or reliability"
- Chris Chapman, NASA test engineer

FDM offers the design flexibility and quick turnaround to build tailored housings for complex electronic assemblies. For example, one ear-shaped exterior housing is deep and contorted, and would be impossible — or at least prohibitively expensive — to machine.

For its 3D-printed parts, NASA uses ABS, PC-ABS, and Polycarbonate materials. FDM, patented by Stratasys, is the only 3D-printing method that supports a wide range of production-grade thermoplastics, lightwight plastics boasting unparalleled durability, making them optimal for for rugged end-use parts.

Failure is Not An Option

NASA’s mantra regarding human space travel is: Failure is not an option. The journey to space subjects a vehicle to intense stresses, starting with the launch from Earth.

Stratasys technology allows all processes, from design to final production, in house

You always want it to be as light as possible, but you also want it to be strong enough that it’s got your safety factors, that nobody’s going to get hurt. You’re going at several thousand miles per hour just to escape the Earth’s atmosphere. So you’ve got to be able to handle all these vibrations just to get out into space, and the vehicle can’t be damaged

Chapman says. NASA engineers also 3D print prototypes to test form, fit and function of parts they’ll eventually build in other materials. This ensures machined parts are based on the best possible design by solving challenges before committing to expensive tooling.

“Everyone’s got a budget to deal with, and we’re no different” 

Every day, NASA engineers and their devices bridge the gap between practical concerns such as budget and manufacturability, and the human drive to discover the secrets of unfamiliar worlds — in the workshop, in the desert, and eventually on another planet.

For over 20 years, Cimetrix Solutions has been Canada's leader in Additive Manufacturing and 3D Printing solutions for aerospace applications. With unparalleled experience, and partnering with the nation's aerospace innovators, Cimetrix has worked to create everything from extensive flight simulators, to advanced, end-use parts with aerospace-grade engineering thermoplastics. To learn more about our professional services and products, please visit our other pages at www.cimetrixsolutions.com.